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A new technique for the identification and characterization of damage in structures is
presented. The technique employs a newly developed non-exponential transient decay
model which relies on a statistical description of the structure’s modal characteristics. The
resulting technique provides an estimate of both the severity and extent of the damage
without reliance on detailed modal information. The technique is supported by numerical
simulations of damaged truss structures.
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1. INTRODUCTION

Many techniques have been proposed for the non-invasive identification and
characterization of damage in structures. Most concentrate on correlating damage with
changes in the frequency domain characteristics of the structure, primarily natural
frequencies. (The review by Salawu [1] provides a comprehensive discussion of these
techniques). These approaches are fundamentally inhibited, however, by the trade-off
between spatial resolution and the accuracy of frequency domain predictions. High spatial
resolution requires the use of high order modal information which is difficult to accurately
model while low order modal characteristics are accurately predictable but provide poor
spatial resolution.

This paper presents a time domain damage identification technique which relies on
observed free structural responses and their corresponding energy decay characteristics.
The technique offers high spatial resolution, independent of the structure’s modal details,
providing estimates of both the extent and severity of damage in the structure. High spatial
resolution is possible because the structure’s modal characteristics are modelled
statistically, allowing the use of high order modal responses.

The technique is inspired by prior research to identify and characterize damage in
polycrystals using transient energy decays. These techniques assume proportional,
visco-elastic damping and relate microstructural damage, which increases internal
friction [2], to energy decay rates [3-5]. The proportional damping assumption
inherently assumes that the damage in the polycrystal is uniformly distributed throughout
the material volume. This technique is impractical in structural applications because
damage is often spatially localized. Additionally, a variety of mechanism unrelated
to damage exists which might affect the energy decay rate of a typical in-service structure.
More recently, the author has presented an additional decay technique, more suitable to
structural applications, which identifies and characterizes non-uniform damage
distributions in visco-elastic solids. This technique relies on a non-exponential, transient
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decay model for non-proportionally damped systems [6]. While adding considerable
complexity, non-exponential decays also present an opportunity because, when properly
modelled, they can be used to inversely determine damage characteristics as demonstrated
in ultrasonic systems [6].

This paper extends the ultrasonic technique to the identification and characterization of
structural damage which increases dissipation, such as corroded or loosely fastened
connections, by exploiting the characteristics of non-exponential decays. The technique is
developed for application in structures which have a fraction of their connections damaged
such that they provide a local viscous energy sink. Specifically, section 2 presents
a theoretical model describing viscous, non-exponential, structural decay. The experimental
use and range of application of the proposed technique is then discussed briefly in section 3.
Numerical experiments which support the application of the proposed technique are
presented in section 4 while section 5 provides some concluding remarks.

2. THEORY

The proposed damage characterization technique is based on a model for the transient
decay of the total energy of vibration in a structure. The structures are modelled by a system
of coupled, linear, second order ordinary differential equations written in terms of the
structure’s displacement vector {x}, mass matrix [m], stiffness matrix [k], and damping
matrix [c],

[m] {3} + [c] {%} + [K]{x} = {O}. (1)

This model is valid for the free response of all viscously damped, linear structural systems
including those with complicated, non-proportional damping. It should be emphasized that
it is the damping matrix [c], which is used to characterize the damage in the structure.
Specifically, viscous losses are added to each damaged degree of freedom resulting in
a damping matrix which describes the intensity and distribution of damage throughout the
structure.

Predicting transient decays in non-proportionally damped systems is complicated
because the system’s undamped modal basis does not uncouple the damped equations of
motion (1), and, in fact, results in both complex valued eigenvalues, 4, = w; + i, and
eigenvectors {u;} [7]. The dissipation characteristics of such a system can, however, be
explored by calculating the power flow in the structure. A real-valued expression for the
power flow in the structure can be derived by premultiplying the equation of motion (1), by
the complex conjugate of the system’s velocity vector {x*},

T Im] %} + (%) T[] {x) + (X} K] {x} = {0} @

and adding the resulting equation (2), to its complex conjugate. Realizing that
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a real-valued expression for the power flow in the system can be written as

ST + (T TR + (e () = (0) @
Equation (4) broadly characterizes the power flow in the system by equating the time rate of
change of the kinetic and potential energy with the rate of energy dissipation through
viscous mechanisms.

If the motion of the system is restricted to the nth mode, {x} = {u,}exp(il,t), an
expression for the nth decay rate 8, can be derived from equation (4) assuming [m], [¢] and
[k] are symmetric:

_ " Le] {u}

P = T T ()

)

which is valid for all viscous damping matrices [c]; no other limitation is imposed.

While equation (5) provides an expression for all decay rates in the structural system, and
therefore is capable of characterizing non-exponential decay, it is of limited use because
employing it in this fashion would require complete knowledge of the structures’ modal
characteristics ({u,}, ®,).

A more efficient description of the decay rates in the structural system can be obtained
statistically. The general approach, most recently presented by Burkhardt and Weaver
[3], is to treat modal vectors, {u,}, as uncorrelated, random Gaussian vectors. It is
further assumed that the viscous dissipation intensity is a constant value, ¢, for all damaged
degrees of freedom but, importantly, not all degrees of freedom are damaged. As a
result, each damaged location in the structures is “equally damaged” but arbitrarily
located. Additionally, assuming that light damping yields real-valued modal vectors,
an expression for the expected statistical distribution of modal decay rates, p(f8), can be
derived [37]:

pa-te ")
p(p) = ma (6)

in terms of ¢, the viscous damping intensity, m, the system’s mass density, and B and N, the
number of damped degrees of freedom and the total number of degrees of freedom in the
system respectively.

With an expression for the probability density function of decay rates, equation (6), the
ensemble average energy decay of the structure, d (), composed of a collection of modes with
decay rates drawn from the derived distribution, can be calculated. Assuming the total
initial energy in the structure, E,, is equally distributed among the modes,

o0 —B/2
d(t)=Eof p(ﬂ)ez”’dﬁ=Eo[1+<2]cV>t] : (7

m

a power-law description for the non-exponential decay process is recovered, characterized
by two independent parameters
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The first parameter, ¢/mN, characterizes the intensity of the structural damage through
the viscous damping factor ¢, while the second parameter, B/2, provides an estimate
of the extent of the structural damage through B, the number of damaged degrees of
freedom.

Now, with an expression for the non-exponential decay process, equation (7), it is possible
to exploit its form to determine the two free parameters, equation (8), from an observed
energy decay. The parameters can be determined in one of the two ways, either through
a non-linear curve fit of equation (7) or by a linear regression analysis of

d ) 2c
- [dt {In [d(t)]}} =37t <mN>t )

which follows directly from equation (7). Determination of the two free parameters provides
an immediate estimate of the intensity of the damage through the viscous damping
parameter, ¢, as well as the spatial extent of the damage through the parameter B.

3. APPLICATION

Practical application of the developed technique for the characterization of structural
damage has limitations on its application beyond the explicit assumptions made during its
derivation. General limitations on energy decay methods have already been discussed in
detail by Weaver [9]. In summary, the developed technique is applicable provided the
structure’s decay is reverberant and involves the participation of numerous modes.
Reverberance, which requires that many system transits occur within a characteristic decay
time, provides validity to the assumption that modal amplitudes are Gaussian random
variables. Numerous modes, and therefore numerous decay rates, are desirable because the
derived decay model is an ensemble average result averaged over all possible decay rates.
Consequently, numerous modes and decay rates participating in the observed decay are
more likely to match the derived decay model.

An additional limitation on the technique is imposed by signal duration. The system
under interrogation must posses a decay duration which is sufficient to manifest curvature.
On short time scales all energy decays will appear exponential. It is necessary to observe the
signal over a time scale in which the difference in the decay rates of the individual modes,
which may be small, becomes significant. Practically speaking, the curvature will become
evident when the slope of the logarithm of the energy decay is significantly different from its
initial slope.

Consider the slope of the logarithm of decay, equation (7), normalized by its slope at time
Zero:

(@0 (In[d)]} 2\ 7
#O =4 /do) tn [d (0] [1 * (W> t] : (19

Now define a characteristic curvature time, t;,,, as the time required for the slope of the
logarithm of decay to fall to half its original value:

mN

S (11)
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The meaning of this expression is more clear in terms of a non-dimensional time 1 = 2{ff>t,
where 2{fi> = ¢B/mN is the mean energy decay rate. Then,

(@) = [1 ¥ (;H ~tp=7, (12

which indicates that a signal duration of B/2 energy decay times is required for the slope of
the logarithm of decay to fall to half its original value. Consequently, as the number of
damaged degrees of freedom rises longer signal durations are required to observe the
non-exponential decay.

4. NUMERICAL EXPERIMENTS

As a test of the proposed damage characterization technique numerical experiments were
performed on nominally undamped, square, planar trusses of unit dimension with 90
degrees of freedom, N = 90, Figure 1. The truss is composed of a series of nominally
identical elastic rods constrained to move in the plane of the structure. To model the
complexity of a typical structural system the positions of the truss joints are slightly
perturbed, thus varying the length of the individual rods. Three separate damage scenarios
are considered with viscous dampers added to either 4, 8 or 12 degrees of freedom,
B =4, 8, 12. Additionally, the corner nodes of the structure are fixed to prevent motion in
the plane.

The common characteristics of the simulated systems are as follows: bar mass
density = 1, bar cross-sectional area = 1, modulus of elasticity = 1, and intensity of viscous
damage, ¢ = 1. These system characteristics are chosen because they result in a system
transit time of 1 s. Consequently, a wave travelling in the system will take 1 s to cross the
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Figure 1. Sample truss configuration.
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unit width of the system. In addition to these common characteristics each simulated truss
has B degrees of freedom chosen randomly to be “damaged” by the inclusion of a viscous
damper. Once the configuration of the truss was determined its mass [m], damping [¢], and
stiffness [k], matrices were constructed using standard finite element techniques. Global
mass matrices were assembled using a consistent rather than lumped formulation.

The transient response of the truss to an initial displacement of the central node was
determined by integrating the equation of motion (1), using the MATLAB function
“ode23t” through t = 100. This first required rewriting the governing equation using
a state-space formulation because of the non-proportional characteristics of the damping
matrix [7]. The resulting governing equation in state space is a “traditional” equation of
motion amenable to standard integration techniques such as those offered by MATLAB.

The resulting structural response was interrogated at two interior nodes, location 1 and
location 2, with the energy density of the nodes recorded as a function of time. A third
energy density signal was generated by spatially averaging the two independent receiver
locations, avg sample. Additionally, the total energy present in the truss was recorded as
a function of time, total energy. The four recorded broadband decay signals were then fit to
the natural logarithm of non proportional decay model, equation (7), using the MATLAB
function “nlinfit.” Additionally, no configuration averaging was performed; all results
presented were for single truss realizations.

The results for the three damage scenarios, ¢ = 1:0, B = 4, 8, 13, are shown in Figures 2-4
with the best-fit, non-proportional decay model shown as a solid black line. Additionally,
estimates of the two significant curve-fit parameters are shown with an overbar, B and ¢.

In each damage scenario, ¢ = 1-0, B =4, 8, 12, the proposed technique yields close
estimates for both the number of damped degrees of freedom B, and damage intensity, c.
This is particularly significant considering that virtually no averaging was performed. The
single spatial average that was performed did not yield particularly more accurate results.

In(d @)
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Figure 2. Non-proportional structural decays and model fits: B = 4, ¢ = 1. (a) Location 1: B=28,¢=24.(b)
Location 2: B = 3:6, ¢ = 1-3. (c) Total energy: B =45, ¢ = 0-7. (d) Avg. sample: B = 36, ¢ = 1-7.
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Figure 3. Non-proportional structural decays and model fits: B =38, ¢ = 1. (a) Location 1: B=280,c=09.
(b) Location 2: B =7-2, ¢ = 1-0. (c) Total energy: B = 6:6, ¢ = 1-2. (d) Avg. sample: B = 76, ¢ = 09.
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Figure 4. Non-proportional structural decays and model fits: B = 12, ¢ = 1. (a) Location 1: B=141,¢=05.

(b) Location 2: B = 12:8, ¢ = 0-6. (c) Total energy: B = 13-2, ¢ = 06. (d) Avg. sample: B = 13-6, ¢ = 0-5.

This is not unexpected, for averaging to be significant it must occur over multiple decay
rates. Spatial averaging provides no new information concerning decay rates. The response
at each location results from the same modes and therefore the same decay rates.
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5. CONCLUSIONS

A theoretical model for the non-exponential decay of viscously damaged structures has
been derived and shown to be a useful tool for the determination of both the intensity and
extent of viscous damage in structures. Importantly, the technique is independent of modal
details and, therefore, is insensitive to modelling details and service-related changes to the
structure. This is in contrast to many current damage characterization techniques which
require detailed model information and modal characteristics.

The technique also has several significant limitations including restriction to viscous
damage mechanisms and an inability to spatially locate the damage. Future work will
concentrate on exploring the effect of non-viscous damage mechanisms on the technique as
well as experimentally testing its effectiveness.
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